JARCAS

STUDIOS

Jarcas Popup Ul

v1.0

Instruction Manual

Copyright 2015 Jarcas Studios

Introduction

Thank you for purchasing the Jarcas Popup Ul (JPUI) system! JPUI is built on top of the
excellent new Unity Ul (uGUI) system in Unity 4.6. No third-party packages or plugins are
required.

We designed JPUI in the hopes that it will make the task of both displaying popup dialogs and
retrieving user input from them a simple and painless one. With JPUI you can display both
modal popup menus that are centered on the screen as well as context popup menus that are
centered over some other object on-screen.

Example Scene

We have included an example scene (JarcasPopupExample) showing how JPUI could work
in-game. Each of the buttons in the scene will make a different call to show a popup dialog.
The status text will also be updated with user input on calls that provide a UnityAction callback
function.

JarcasPopupExample.cs contains all the example code used to display the various popups.
This script contains examples of most usages of JPUI as described in the API Reference
below.

Quick Start

If you want to quickly see how JPUI would function in your game, try placing an instance of
the PopupManager prefab (in the Example/Prefabs folder) on your Unity Ul Canvas. Make

sure that the PopupManager is the last Ul GameObiject in your Canvas hierarchy so that it will
always display on top of any other Ul that may be active.

The prefab comes with some sample popup panels built-in. Once it has been placed in the
scene, you can immediately start making calls to the PopupManager from your scripts. (see
API Reference below)

Integrating with your Ul

If you want to use JPUI with your own panels, sprites, fonts, etc., then you’ll need the
following:

1. a Popup panel GameObject and/or a Context Popup panel GameObject

2. (optional) Animators for your Popup and Context Popup panels (see Animated Popup
Panels below)

3. a PopupManager component placed somewhere in your scene

The PopupManager component must then be given the following references to your various
Ul panels and widgets. Note that some references may be left blank if you do not intend to
use those features.

e popupPanel - The popup panel GameObject that will be activated when popups are
shown

e popupButtonParent - The RectTransform in the popup panel that buttons will be
parented to when they are instantiated

e popupButtonPrefab - The prefab that will be instantiated when buttons are added to
the popup panel
textWidget - The Text component that holds the main text of the popup panel
inputWidget - The InputField component that will be used for input popups
textHighlightColor - A highlight text color that can be universally adjusted across all
popup text. Highlight your text by using the <color=highlight> tag

e contextPopupPanel - The context popup panel GameObject that will be activated
when context popups are shown

e contextButtonParent - The RectTransform in the context popup panel that buttons
will be parented to when they are instantiated

e contextButtonPrefab - The prefab that will be instantiated when buttons are added to
the context popup panel

Animated Popup Panels

JPUI can just simply activate and deactivate your popup panels, but to really spice up your
popups JPUI supports Mecanim animations for opening and closing the popup panels. Here
are the requirements for animated popup panels:

e Animator component on the popup panel GameObiject

e Animator Controller must have:
o a bool param named “open” that will trigger the animation to open the panel
o a state named “Closed” that signifies the panel is finished closing

Examine the setup of the example popup panels for further reference.

API| Reference

JPUI is contained within its own namespace, Jarcas, so before making any calls you will need
to add a using statement to the top of your script:

using Jarcas;
All JPUI calls are then made to the PopupManager singleton via this syntax:

PopupManager.instance.MethodName ()

Public JPUI methods

ShowPopup (string text)
e Shows the popup w/ an OK button and no callback

ShowPopup (string text, UnityAction< int > callbackMethod)
e Shows the popup w/ an OK button
e UnityAction callback will be called when OK is pressed

ShowPopup (string text, string buttonText, UnityAction< int >
callbackMethod)

e Shows the popup w/ one button w/ custom text

e UnityAction callback will be called when button is pressed

ShowPopup (string text, string buttonlText, string button2Text,
UnityAction< int > callbackMethod)

e Shows the popup w/ two buttons w/ custom text

e UnityAction callback will be called when button is pressed

e int callback parameter will contain the 0-based index of the button that was pressed

ShowPopup (string text, string buttonlText, string button2Text,
string button3Text, UnityAction< int > callbackMethod)

e Shows the popup w/ three buttons w/ custom text

e UnityAction callback will be called when button is pressed

e int callback parameter will contain the 0-based index of the button that was pressed

ShowLoadingScreen (string loadingText)
e Shows a popup with no buttons (usually used as a loading screen). Must be manually
hidden later by calling HidePopup()

ShowInputPopup (string mainText, string placeholderPrompt, string
defaultInputText, string buttonText, UnityAction< string >
callbackMethod)

e Shows the popup prompting the user to input some text

e Placeholder prompt will display in the input field when empty

e Default input text is what will initially appear in the input field

e UnityAction callback will be called when button is pressed

e string callback parameter will contain the text that was input by the user
HidePopup ()

e Hides any active popup
e Generally only necessary for loading screen popups, others hide themselves when a
button is pressed

ShowContextPopup (RectTransform rt, Sprite[] buttonSprites,
UnityAction< int > callbackMethod)
e Shows a context popup that will be positioned at the pivot of the provided
RectTransform
Creates one graphical button for each Sprite provided
int callback parameter will contain the 0-based index of the button that was pressed

HideContextPopup ()
e Hides an active context popup
e Context popups hide themselves when a button is pressed or when a click is
registered outside the panel, but this may still be useful in some situations

Support and Feedback

Please don’t hesitate to contact us at support@jarcas.com if you need any help with JPUI.
Feedback is also encouraged. Anything you hate, love, or would like to see added/changed?
Please let us know!

Follow Jarcas Studios on Twitter @JarcasStudios

Jarcas Studios
www.jarcas.com

mailto:support@jarcas.com

